Nickel-Titanium Rotary File Systems: What’s New? (2024)

1. Walia HM, Brantley WA, Gerstein H. An initial investigation of the bending and torsional properties of Nitinol root canal files. J Endod. 1988;14(7):346–51. [PubMed] [Google Scholar]

2. Liu SB, Fan B, Cheung GS, Peng B, Fan MW, Gutmann JL, et al. Cleaning effectiveness and shaping ability of rotary ProTaper compared with rotary GT and manual K-Flexofile. Am J Dent. 2006;19(6):353–8. [PubMed] [Google Scholar]

3. Wayman CM, Ōtsuka K. Shape memory materials. Cambridge University Press; 1998. [Google Scholar]

4. Mohammadi Z, Soltani MK, Shalavi S, Asgary S. A Review of the Various Surface Treatments of NiTi Instruments. Iran Endod J. 2014;9(4):235–40. [PMC free article] [PubMed] [Google Scholar]

5. Yoneyama T, Miyazaki S. Shape memory alloys for biomedical applications. Cambridge: Boca Raton Woodhead Pub, CRC Press; 2009. [Google Scholar]

6. Ye J, Gao Y. Metallurgical characterization of M-Wire nickel-titanium shape memory alloy used for endodontic rotary instruments during low-cycle fatigue. J Endod. 2012;38(1):105–7. [PubMed] [Google Scholar]

7. Aoki T, Okafor IC, Watanabe I, Hattori M, Oda Y, Okabe T. Mechanical properties of cast Ti-6Al-4V-XCu alloys. J Oral Rehabil. 2004;31(11):1109–14. [PubMed] [Google Scholar]

8. Ounsi HF, Nassif W, Grandini S, Salameh Z, Neelakantan P, Anil S. Evolution of Nickel-titanium Alloys in Endodontics. J Contemp Dent Pract. 2017;18(11):1090–6. [PubMed] [Google Scholar]

9. Zhou H, Peng B, Zheng YF. An overview of the mechanical properties of nickel–titanium endodontic instruments. Endod Topics. 2013;29(1):42–54. [Google Scholar]

10. Viana AC, Chaves Craveiro de Melo M, Guiomar de Azevedo Bahia M, Lopes Buono VT. Relationship between flexibility and physical, chemical, and geometric characteristics of rotary nickel-titanium instruments. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2010;110(4):527–33. [PubMed] [Google Scholar]

11. Shen Y, Zhou HM, Zheng YF, Peng B, Haapasalo M. Current challenges and concepts of the thermomechanical treatment of nickel-titanium instruments. J Endod. 2013;39(2):163–72. [PubMed] [Google Scholar]

12. Otsuka K, Ren X. Physical metallurgy of Ti–Ni-based shape memory alloys. Prog Mater Sci. 2005;50(5):511–678. [Google Scholar]

13. Thompson SA. An overview of nickel-titanium alloys used in dentistry. Int Endod J. 2000;33(4):297–310. [PubMed] [Google Scholar]

14. Kim JY, Cheung GS, Park SH, Ko DC, Kim JW, Kim HC. Effect from cyclic fatigue of nickel-titanium rotary files on torsional resistance. J Endod. 2012;38(4):527–30. [PubMed] [Google Scholar]

15. Parashos P, Gordon I, Messer HH. Factors influencing defects of rotary nickel-titanium endodontic instruments afterclinical use. J Endod. 2004;30(10):722–5. [PubMed] [Google Scholar]

16. Sattapan B, Nervo GJ, Palamara JE, Messer HH. Defects in rotary nickel-titanium files after clinical use. J Endod. 2000;26(3):161–5. [PubMed] [Google Scholar]

17. Peters OA, Barbakow F. Dynamic torque and apical forces of ProFile.04 rotary instruments during preparation of curved canals. Int Endod J. 2002;35(4):379–89. [PubMed] [Google Scholar]

18. Bulem ÜK, Kececi AD, Guldas HE. Experimental evaluation of cyclic fatigue resistance of four different nickel-titanium instruments after immersion in sodium hypochlorite and/or sterilization. J Appl Oral Sci. 2013;21(6):505–10. [PMC free article] [PubMed] [Google Scholar]

19. Pedullà E, Lo Savio F, Boninelli S, Plotino G, Grande NM, La Rosa G, et al. Torsional and Cyclic Fatigue Resistance of a New Nickel-Titanium Instrument Manufactured by Electrical Discharge Machining. J Endod. 2016;42(1):156–9. [PubMed] [Google Scholar]

20. McCormick P, Liu Y. Thermodynamic analysis of the martensitic transformation in NiTi—II. Effect of transformation cycling. Acta Metallurgica et Materialia. 1994;42(7):2407–13. [Google Scholar]

21. Kim HC, Yum J, Hur B, Cheung GS. Cyclic fatigue and fracture characteristics of ground and twisted nickel-titanium rotaryfiles. J Endod. 2010;36(1):147–52. [PubMed] [Google Scholar]

22. Zhou HM, Shen Y, Zheng W, Li L, Zheng YF, Haapasalo M. Mechanical properties of controlled memory and superelastic nickel-titanium wires used in the manufacture of rotary endodontic instruments. J Endod. 2012;38(11):1535–40. [PubMed] [Google Scholar]

23. Alapati SB, Brantley WA, Iijima M, Clark WA, Kovarik L, Buie C, et al. Metallurgical characterization of a new nickel-titanium wire for rotary endodontic instruments. J Endod. 2009;35(11):1589–93. [PubMed] [Google Scholar]

24. Ruiz-Sánchez C, Faus-Matoses V, Alegre-Domingo T, Faus-Matoses I, Faus-Llácer VJ. An in vitro cyclic fatigue resistance comparison of conventional and new generation nickel-titanium rotary files. J Clin Exp Dent. 2018;10(8):e805–9. [PMC free article] [PubMed] [Google Scholar]

25. Gambarini G, Grande NM, Plotino G, Somma F, Garala M, De Luca M, et al. Fatigue resistance of engine-driven rotary nickel-titanium instruments produced by new manufacturing methods. J Endod. 2008;34(8):1003–5. [PubMed] [Google Scholar]

26. Pérez-Higueras JJ, Arias A, de la Macorra JC, Peters OA. Differences in cyclic fatigue resistance between ProTaper Next and ProTaper Universal instruments at different levels. J Endod. 2014;40(9):1477–81. [PubMed] [Google Scholar]

27. Ha JH, Kim SK, Cohenca N, Kim HC. Effect of R-phase heat treatment on torsional resistance and cyclic fatigue fracture. J Endod. 2013;39(3):389–93. [PubMed] [Google Scholar]

28. Yum J, Cheung GS, Park JK, Hur B, Kim HC. Torsional strength and toughness of nickel-titanium rotary files. J Endod. 2011;37(3):382–6. [PubMed] [Google Scholar]

29. Park SY, Cheung GS, Yum J, Hur B, Park JK, Kim HC. Dynamic torsional resistance of nickel-titanium rotary instruments. J Endod. 2010;36(7):1200–4. [PubMed] [Google Scholar]

30. King JB, Roberts HW, Bergeron BE, Mayerchak MJ. The effect of autoclaving on torsional moment of two nickel-titanium endodontic files. Int Endod J. 2012;45(2):156–61. [PubMed] [Google Scholar]

31. Casper RB, Roberts HW, Roberts MD, Himel VT, Bergeron BE. Comparison of autoclaving effects on torsional deformation and fracture resistance of three innovative endodontic file systems. J Endod. 2011;37(11):1572–5. [PubMed] [Google Scholar]

32. Metzger Z, Teperovich E, Zary R, Cohen R, Hof R. The self-adjusting file (SAF). Part 1:respecting the root canal anatomy-a new concept of endodontic files and its implementation. J Endod. 2010;36(4):679–90. [PubMed] [Google Scholar]

33. Shen Y, Qian W, Abtin H, Gao Y, Haapasalo M. Fatigue testing of controlled memory wire nickel-titanium rotary instruments. J Endod. 2011;37(7):997–1001. [PubMed] [Google Scholar]

34. Peters OA, Gluskin AK, Weiss RA, Han JT. An in vitro assessment of the physical properties of novel Hyflex nickel-titanium rotary instruments. Int Endod J. 2012;45(11):1027–34. [PubMed] [Google Scholar]

35. Schäfer E. Effect of physical vapor deposition on cutting efficiency of nickel-titanium files. J Endod. 2002;28(12):800–2. [PubMed] [Google Scholar]

36. Lopes HP, Elias CN, Vieira VT, Moreira EJ, Marques RV, de Oliveira JC, et al. Effects of electropolishing surface treatment on the cyclic fatigue resistance of BioRace nickel-titanium rotary instruments. J Endod. 2010;36(10):1653–7. [PubMed] [Google Scholar]

37. Zhang EW, Cheung GS, Zheng YF. Influence of cross-sectional design and dimension on mechanical behavior of nickel-titanium instruments under torsion and bending:a numerical analysis. J Endod. 2010;36(8):1394–8. [PubMed] [Google Scholar]

38. Shen Y, Zhou HM, Zheng YF, Campbell L, Peng B, Haapasalo M. Metallurgical characterization of controlled memory wire nickel-titanium rotary instruments. J Endod. 2011;37(11):1566–71. [PubMed] [Google Scholar]

39. Marceliano-Alves MF, Sousa-Neto MD, Fidel SR, Steier L, Robinson JP, Pécora JD, et al. Shaping ability of single-file reciprocating and heat-treated multifile rotary systems:a micro-CT study. Int Endod J. 2015;48(12):1129–36. [PubMed] [Google Scholar]

40. Saber SE, Nagy MM, Schäfer E. Comparative evaluation of the shaping ability of ProTaper Next, iRaCe and Hyflex CM rotary NiTi files in severely curved root canals. Int Endod J. 2015;48(2):131–6. [PubMed] [Google Scholar]

41. Plotino G, Testarelli L, Al-Sudani D, Pongione G, Grande NM, Gambarini G. Fatigue resistance of rotary instruments manufactured using different nickel-titanium alloys:a comparative study. Odontology. 2014;102(1):31–5. [PubMed] [Google Scholar]

42. Bürklein S, Börjes L, Schäfer E. Comparison of preparation of curved root canals with Hyflex CM and Revo-S rotary nickel-titanium instruments. Int Endod J. 2014;47(5):470–6. [PubMed] [Google Scholar]

43. Goo HJ, Kwak SW, Ha JH, Pedullà E, Kim HC. Mechanical Properties of Various Heat-treated Nickel-titanium Rotary Instruments. J Endod. 2017;43(11):1872–7. [PubMed] [Google Scholar]

44. Pereira ÉS, Viana AC, Buono VT, Peters OA, Bahia MG. Behavior of nickel-titanium instruments manufactured with different thermal treatments. J Endod. 2015;41(1):67–71. [PubMed] [Google Scholar]

45. Pongione G, Pompa G, Milana V, Di Carlo S, Giansiracusa A, Nicolini E, et al. Flexibility and resistance to cyclic fatigue of endodontic instruments made with different nickel-titanium alloys:a comparative test. Ann Stomatol (Roma) 2012;3(3-4):119–22. [PMC free article] [PubMed] [Google Scholar]

46. Testarelli L, Plotino G, Al-Sudani D, Vincenzi V, Giansiracusa A, Grande NM, et al. Bending properties of a new nickel-titanium alloy with a lower percent by weight of nickel. J Endod. 2011;37(9):1293–5. [PubMed] [Google Scholar]

47. Morgental RD, Vier-Pelisser FV, Kopper PM, de Figueiredo JA, Peters OA. Cutting efficiency of conventional and martensitic nickel-titanium instruments for coronal flaring. J Endod. 2013;39(12):1634–8. [PubMed] [Google Scholar]

48. Peters OA, Morgental RD, Schulze KA, Paqué F, Kopper PM, Vier-Pelisser FV. Determining cutting efficiency of nickel-titanium coronal flaring instruments used in lateral action. Int Endod J. 2014;47(6):505–13. [PubMed] [Google Scholar]

49. Pinheiro SR, Alcalde MP, Vivacqua-Gomes N, Bramante CM, Vivan RR, Duarte MAH, et al. Evaluation of apical transportation and centring ability of five thermally treated NiTi rotary systems. Int Endod J. 2018;51(6):705–13. [PubMed] [Google Scholar]

50. Daneshmand S, Kahrizi EF, Abedi E, Abdolhosseini MM. Influence of machining parameters on electro discharge machining of NiTi shape memory alloys. Int J Electrochem Sci. 2013;8(3):3095–104. [Google Scholar]

51. Bojorquez B, Marloth R, Es-Said O. Formation of a crater in the workpiece on an electrical discharge machine. Engineering Failure Analysis. 2002;9(1):93–7. [Google Scholar]

52. Haapasalo M, Shen Y. Evolution of nickel–titanium instruments:from past to future. Endod Topics. 2013;29(1):3–17. [Google Scholar]

53. Özyürek T, Gündoğar M, Uslu G, Yılmaz K, Staffoli S, Nm G, et al. Cyclic fatigue resistances of Hyflex EDM, WaveOne gold, Reciproc blue and 2shape NiTi rotary files in different artificial canals. Odontology. 2018;106(4):408–13. [PubMed] [Google Scholar]

54. Iacono F, Pirani C, Generali L, Bolelli G, Sassatelli P, Lusvarghi L, et al. Structural analysis of HyFlex EDM instruments. Int Endod J. 2017;50(3):303–13. [PubMed] [Google Scholar]

55. Gündoğar M, Özyürek T. Cyclic Fatigue Resistance of OneShape, HyFlex EDM, WaveOne Gold, and ReciprocBlue Nickel-titanium Instruments. J Endod. 2017;43(7):1192–6. [PubMed] [Google Scholar]

56. Kaval ME, Capar ID, Ertas H. Evaluation of the cyclic fatigue and torsional resistance of novel nickel-titanium rotary files with various alloy properties. J Endod. 2016;42(12):1840–3. [PubMed] [Google Scholar]

57. Pirani C, Iacono F, Generali L, Sassatelli P, Nucci C, Lusvarghi L, et al. HyFlex EDM:superficial features, metallurgical analysis and fatigue resistance of innovative electro discharge machined NiTi rotary instruments. Int Endod J. 2016;49(5):483–93. [PubMed] [Google Scholar]

58. Özyürek T, Yılmaz K, Uslu G. Shaping Ability of Reciproc, WaveOne GOLD, and HyFlex EDM Single-file Systems in Simulated S-shaped Canals. J Endod. 2017;43(5):805–9. [PubMed] [Google Scholar]

59. Venino PM, Citterio CL, Pellegatta A, Ciccarelli M, Maddalone M. A Micro-computed Tomography Evaluation of the Shaping Ability of Two Nickel-titaniumInstruments, HyFlex EDM and ProTaper Next. J Endod. 2017;43(4):628–32. [PubMed] [Google Scholar]

60. Zupanc J, Vahdat-Pajouh N, Schäfer E. New thermomechanically treated NiTi alloys - a review. Int Endod J. 2018;51(10):1088–103. [PubMed] [Google Scholar]

61. Plotino G, Grande NM, Cotti E, Testarelli L, Gambarini G. Blue treatment enhances cyclic fatigue resistance of vortex nickel-titanium rotary files. J Endod. 2014;40(9):1451–3. [PubMed] [Google Scholar]

62. Shen Y, Zhou H, Coil JM, Aljazaeri B, Buttar R, Wang Z, et al. ProFile Vortex and Vortex Blue Nickel-Titanium Rotary Instruments after Clinical Use. J Endod. 2015;41(6):937–42. [PubMed] [Google Scholar]

63. Duke F, Shen Y, Zhou H, Ruse ND, Wang ZJ, Hieawy A, et al. Cyclic Fatigue of ProFile Vortex and Vortex Blue Nickel-Titanium Files in Single and Double Curvatures. J Endod. 2015;41(10):1686–90. [PubMed] [Google Scholar]

64. Adıgüzel M, Capar ID. Comparison of Cyclic Fatigue Resistance of WaveOne and WaveOne Gold Small, Primary, and Large Instruments. J Endod. 2017;43(4):623–27. [PubMed] [Google Scholar]

65. De-Deus G, Silva EJ, Vieira VT, Belladonna FG, Elias CN, Plotino G, et al. Blue Thermomechanical Treatment Optimizes Fatigue Resistance and Flexibility of the Reciproc Files. J Endod. 2017;43(3):462–6. [PubMed] [Google Scholar]

66. Elnaghy AM, Elsaka SE. Mechanical properties of ProTaper Gold nickel-titanium rotary instruments. Int Endod J. 2016;49(11):1073–8. [PubMed] [Google Scholar]

67. Gao Y, Gutmann JL, Wilkinson K, Maxwell R, Ammon D. Evaluation of the impact of raw materials on the fatigue and mechanical properties of ProFile Vortex rotary instruments. J Endod. 2012;38(3):398–401. [PubMed] [Google Scholar]

68. Nguyen HH, Fong H, Paranjpe A, Flake NM, Johnson JD, Peters OA. Evaluation of the resistance to cyclic fatigue among ProTaper Next, ProTaper Universal, and Vortex Blue rotary instruments. J Endod. 2014;40(8):1190–3. [PubMed] [Google Scholar]

69. Uygun AD, Kol E, Topcu MK, Seckin F, Ersoy I, Tanriver M. Variations in cyclic fatigue resistance among ProTaper Gold, ProTaper Next and ProTaper Universal instruments at different levels. Int Endod J. 2016;49(5):494–9. [PubMed] [Google Scholar]

70. Özyürek T. Cyclic Fatigue Resistance of Reciproc, WaveOne, and WaveOne Gold Nickel-Titanium Instruments. J Endod. 2016;42(10):1536–9. [PubMed] [Google Scholar]

71. Duque JA, Vivan RR, Cavenago BC, Amoroso-Silva PA, Bernardes RA, Vasconcelos BC, et al. Influence of NiTi alloy on the root canal shaping capabilities of the ProTaper Universal and ProTaper Gold rotary instrument systems. J Appl Oral Sci. 2017;25(1):27–33. [PMC free article] [PubMed] [Google Scholar]

72. Elnaghy AM, Elsaka SE. Shaping ability of ProTaper Gold and ProTaper Universal files by using cone-beamcomputed tomography. Indian J Dent Res. 2016;27(1):37–41. [PubMed] [Google Scholar]

73. Elnaghy A, Elsaka S. Cyclic fatigue resistance of XP-endo Shaper compared with different nickel-titanium alloyinstruments. Clin Oral Investig. 2018;22(3):1433–7. [PubMed] [Google Scholar]

74. Silva EJNL, Vieira VTL, Belladonna FG, Zuolo AS, Antunes HDS, Cavalcante DM, et al. Cyclic and Torsional Fatigue Resistance of XP-endo Shaper and TRUShape Instruments. J Endod. 2018;44(1):168–72. [PubMed] [Google Scholar]

75. Elnaghy AM, Elsaka SE. Torsional resistance of XP-endo Shaper at body temperature compared with several nickel-titanium rotary instruments. Int Endod J. 2018;51(5):572–6. [PubMed] [Google Scholar]

76. Uslu G, Özyürek T, Gündoğar M, Yılmaz K. Cyclic fatigue resistance of 2Shape, Twisted File and EndoSequence Xpress nickel-titanium rotary files at intracanal temperature. J Dent Res Dent Clin Dent Prospects. 2018;12(4):283–7. [PMC free article] [PubMed] [Google Scholar]

77. Micro-Mega. The 2Shape Brochure. [Accessed Jun 8, 2019]. Available at: http://micro-mega.com/wpcontent/uploads/2018/03/Brochure-2Shape-EN-1.pdf .

78. Elnaghy AM, Elsaka SE. Cyclic Fatigue Resistance of One Curve, 2Shape, ProFile Vortex, Vortex Blue, and RaCe Nickel-Titanium Rotary Instruments in Single and Double Curvature Canals. J Endod. 2018;44(11):1725–30. [PubMed] [Google Scholar]

79. Micro-Mega. The One Curve Brochure. [Accessed Jun 27, 2019]. Available at: http://micro-mega.com/wpcontent/uploads/2018/03/Brochure-One-Curve-EN-1.pdf .

80. Yılmaz K, Özyürek T, Uslu G. Comparision of Cyclic Fatigue Resistance of One Curve, Hyflex EDM, WaveOne Gold and Reciproc Blue Nickel-Titanium Rotary Files at Intra-canal Temperature. Cumhuriyet Dent J. 2019;22(1):42–7. [Google Scholar]

Nickel-Titanium Rotary File Systems: What’s New? (2024)
Top Articles
Latest Posts
Article information

Author: Greg Kuvalis

Last Updated:

Views: 5866

Rating: 4.4 / 5 (55 voted)

Reviews: 86% of readers found this page helpful

Author information

Name: Greg Kuvalis

Birthday: 1996-12-20

Address: 53157 Trantow Inlet, Townemouth, FL 92564-0267

Phone: +68218650356656

Job: IT Representative

Hobby: Knitting, Amateur radio, Skiing, Running, Mountain biking, Slacklining, Electronics

Introduction: My name is Greg Kuvalis, I am a witty, spotless, beautiful, charming, delightful, thankful, beautiful person who loves writing and wants to share my knowledge and understanding with you.