Century-scale carbon sequestration flux throughout the ocean by the biological pump (2024)

References

  1. Siegel, D. A., DeVries, T., Cetinić, I. & Bisson, K. M. Quantifying the ocean’s biological pump and its carbon cycle impacts on global scales. Annu. Rev. Mar. Sci. 15, 329–356 (2023).

    Article Google Scholar

  2. Iversen, M. H. Carbon export in the ocean: a biologist’s perspective. Annu. Rev. Mar. Sci. 15, 357–381 (2023).

  3. Wilson, J. D. et al. The biological carbon pump in CMIP6 models: 21st century trends and uncertainties. Proc. Natl Acad. Sci. USA 119, e2204369119 (2022).

    Article Google Scholar

  4. DeVries, T. & Weber, T. The export and fate of organic matter in the ocean: new constraints from combining satellite and oceanographic tracer observations. Global Biogeochem. Cycles 31, 535–555 (2017).

  5. Siegel, D. A. et al. Assessing the sequestration time scales of some ocean-based carbon dioxide reduction strategies. Environ. Res. Lett. 16, 104003 (2021).

  6. Baker, C. A., Martin, A. P., Yool, A. & Popova, E. Biological carbon pump sequestration efficiency in the north Atlantic: a leaky or a long‐term sink? Global Biogeochem. Cycles 36, e2021GB007286 (2022).

  7. Weyer, N. M. in IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (eds Pörtner, H.-O. et al.) 677–702 (Cambridge Univ. Press, 2019).

  8. Lampitt, R. S. et al. Ocean fertilization: a potential means of geoengineering? Phil. Trans. R. Soc. A 366, 3919–3945 (2008).

  9. Passow, U. & Carlson, C. The biological pump in a high CO2 world. Mar. Ecol. Prog. Ser. 470, 249–271 (2012).

    Article Google Scholar

  10. Weber, T., Cram, J. A., Leung, S. W., DeVries, T. & Deutsch, C. Deep ocean nutrients imply large latitudinal variation in particle transfer efficiency. Proc. Natl Acad. Sci. USA 113, 8606–8611 (2016).

    Article Google Scholar

  11. Boyd, P. W., Claustre, H., Levy, M., Siegel, D. A. & Weber, T. Multi-faceted particle pumps drive carbon sequestration in the ocean. Nature 568, 327–335 (2019).

    Article Google Scholar

  12. National Academies of Sciences. A Research Strategy for Ocean-based Carbon Dioxide Removal and Sequestration (National Academies Press, 2022); https://doi.org/10.17226/26278

  13. Honjo, S., Manganini, S. J., Krishfield, R. A. & Francois, R. Particulate organic carbon fluxes to the ocean interior and factors controlling the biological pump: a synthesis of global sediment trap programs since 1983. Prog. Oceanogr. 76, 217–285 (2008).

    Article Google Scholar

  14. Henson, S. A., Sanders, R. & Madsen, E. Global patterns in efficiency of particulate organic carbon export and transfer to the deep ocean. Global Biogeochem. Cycles https://doi.org/10.1029/2011GB004099 (2012).

  15. Robinson, J. et al. How deep is deep enough? Ocean iron fertilization and carbon sequestration in the Southern Ocean. Geophys. Res. Lett. 41, 2489–2495 (2014).

    Article Google Scholar

  16. Legendre, L., Rivkin, R. B., Weinbauer, M. G., Guidi, L. & Uitz, J. The microbial carbon pump concept: potential biogeochemical significance in the globally changing ocean. Prog. Oceanogr. 134, 432–450 (2015).

    Article Google Scholar

  17. Guidi, L. et al. A new look at ocean carbon remineralization for estimating deepwater sequestration. Global Biogeochem. Cycles 29, 1044–1059 (2015).

  18. Cram, J. A. et al. The role of particle size, ballast, temperature and oxygen in the sinking flux to the deep sea. Global Biogeochem. Cycles 32, 858–876 (2018).

    Article Google Scholar

  19. Nowicki, M., DeVries, T. & Siegel, D. A. Quantifying the carbon export and sequestration pathways of the ocean’s biological carbon pump. Global Biogeochem. Cycles 36, e2021GB007083 (2022).

    Article Google Scholar

  20. Alldredge, A. L. & Gotschalk, C. C. Direct observations of the mass flocculation of diatom blooms: characteristics, settling velocities and formation of diatom aggregates. Deep Sea Res. 36, 159–171 (1989).

  21. Turner, J. T. Zooplankton fecal pellets, marine snow, phytodetritus and the ocean’s biological pump. Prog. Oceanogr. 130, 205–248 (2015).

    Article Google Scholar

  22. Dunne, J. P., Sarmiento, J. L. & Gnanadesikan, A. A synthesis of global particle export from the surface ocean and cycling through the ocean interior and on the seafloor. Global Biogeochem. Cycles https://doi.org/10.1029/2006GB002907 (2007).

  23. Dall’Olmo, G., Dingle, J., Polimene, L., Brewin, R. J. W. & Claustre, H. Substantial energy input to the mesopelagic ecosystem from the seasonal mixed-layer pump. Nat. Geosci. 9, 820–823 (2016).

    Article Google Scholar

  24. Omand, M. M. et al. Eddy-driven subduction exports particulate organic carbon from the spring bloom. Science 348, 222–225 (2015).

    Article Google Scholar

  25. Resplandy, L., Lévy, M. & McGillicuddy, D. J. Jr. Effects of eddy‐driven subduction on ocean biological carbon pump. Global Biogeochem. Cycles 33, 1071–1084 (2019).

  26. Hansell, D., Carlson, C., Repeta, D. & Schlitzer, R. Dissolved organic matter in the ocean: a controversy stimulates new insights. Oceanography 22, 202–211 (2009).

    Article Google Scholar

  27. Liu, L. L. & Huang, R. X. The global subduction/obduction rates: their interannual and decadal variability. J. Clim. 25, 1096–1115 (2012).

    Article Google Scholar

  28. Levy, M. et al. Physical pathways for carbon transfers between the surface mixed layer and the ocean interior. Global Biogeochem. Cycles 27, 1001–1012 (2013).

  29. Bianchi, D., Stock, C., Galbraith, E. D. & Sarmiento, J. L. Diel vertical migration: ecological controls and impacts on the biological pump in a one-dimensional ocean model. Global Biogeochem. Cycles 27, 478–491 (2013).

  30. Aumont, O., Maury, O., Lefort, S. & Bopp, L. Evaluating the potential impacts of the diurnal vertical migration by marine organisms on marine biogeochemistry. Global Biogeochem. Cycles 32, 1622–1643 (2018).

  31. Hansell, D. A. Recalcitrant dissolved organic carbon fractions. Ann. Rev. Mar. Sci. 5, 421–445 (2013).

    Article Google Scholar

  32. Jiao, N. et al. Microbial production of recalcitrant dissolved organic matter: long-term carbon storage in the global ocean. Nat. Rev. Microbiol. 8, 593–599 (2010).

    Article Google Scholar

  33. Jiao, N. et al. The microbial carbon pump and the oceanic recalcitrant dissolved organic matter pool. Nat. Rev. Microbiol. 9, 555 (2011).

    Article Google Scholar

  34. Archibald, K. M., Siegel, D. A. & Doney, S. C. Modeling the impact of zooplankton Diel vertical migration on the carbon export flux of the biological pump. Global Biogeochem. Cycles 33, 181–199 (2019).

  35. Brun, P. et al. Climate change has altered zooplankton-fuelled carbon export in the North Atlantic. Nat. Ecol. Evol. 3, 416–423 (2019).

    Article Google Scholar

  36. Jónasdóttir, S. H., Visser, A. W., Richardson, K. & Heath, M. R. Seasonal copepod lipid pump promotes carbon sequestration in the deep North Atlantic. Proc. Natl Acad. Sci. USA 112, 12122–12126 (2015).

    Article Google Scholar

  37. Auel, H., Klages, M. & Werner, I. Respiration and lipid content of the Arctic copepod Calanus hyperboreus overwintering 1 m above the seafloor at 2,300 m water depth in the Fram Strait. Mar. Biol. 143, 275–282 (2003).

    Article Google Scholar

  38. Hirche, H. J., Muyakshin, S., Klages, M. & Auel, H. Aggregation of the Arctic copepod Calanus hyperboreus over the ocean floor of the Greenland Sea. Deep Sea Res. 53, 310–320 (2006).

  39. Visser, A. W., Grønning, J. & Jónasdóttir, S. H. Calanus hyperboreus and the lipid pump. Limnol. Oceanogr. 62, 1155–1165 (2017).

    Article Google Scholar

  40. Martin, J. H., Knauer, G. A., Karl, D. M. & Broenkow, W. W. VERTEX: carbon cycling in the northeast Pacific. Deep Sea Res. 34, 267–285 (1987).

  41. Holzer, M., DeVries, T. & de Lavergne, C. Diffusion controls the ventilation of a Pacific Shadow Zone above abyssal overturning. Nat. Commun. 12, 4348 (2021).

    Article Google Scholar

  42. Henson, S. A. et al. Uncertain response of ocean biological carbon export in a changing world. Nat. Geosci. 15, 248–254 (2022).

    Article Google Scholar

  43. Hayes, C. T. et al. Global ocean sediment composition and burial flux in the deep sea. Global Biogeochem. Cycles 35, e2020GB006769 (2021).

    Article Google Scholar

  44. Claustre, H., Legendre, L., Boyd, P. W. & Levy, M. The oceans’ biological carbon pumps: framework for a research observational community approach. Front. Mar. Sci. https://doi.org/10.3389/fmars.2021.780052 (2021).

Download references

Century-scale carbon sequestration flux throughout the ocean by the biological pump (2024)
Top Articles
Latest Posts
Article information

Author: Foster Heidenreich CPA

Last Updated:

Views: 5827

Rating: 4.6 / 5 (76 voted)

Reviews: 91% of readers found this page helpful

Author information

Name: Foster Heidenreich CPA

Birthday: 1995-01-14

Address: 55021 Usha Garden, North Larisa, DE 19209

Phone: +6812240846623

Job: Corporate Healthcare Strategist

Hobby: Singing, Listening to music, Rafting, LARPing, Gardening, Quilting, Rappelling

Introduction: My name is Foster Heidenreich CPA, I am a delightful, quaint, glorious, quaint, faithful, enchanting, fine person who loves writing and wants to share my knowledge and understanding with you.